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Soil microbial processes and the cycling of
atmospheric trace gases

By RALF CONRAD

Mazx-Planck-Institut fiir Terrestrische Mikrobiologie, Karl-von-Frisch-Str.,
D-385043 Marburg, Germany

Soil microbial processes involved in the flux between soil and atmosphere of the
atmospheric trace gases methane (CH,), hydrogen (H,), carbon monoxide (CO),
carbonyl sulphide (OCS), nitrous oxide (N,O), and nitric oxide (NO) are re-
viewed. The flux of a trace gas between soil and atmosphere is usually the result
of simultaneous production and consumption reactions, so that a compensation
concentration exists, at which the net flux is zero. With some of the trace gases,
different suites of processes operate at different gas concentrations, so that the
processes that consume a trace gas that is produced within the soil are often
different from those that consume the trace gas entering the soil from the atmo-
sphere. Certain groups of soil microorganisms can metabolize more than one of
these trace gases. The processes involved in the cycling of a trace gas in anoxic
wetland soils are often different from those operating in upland soils.

1. Introduction

Junge (1972) pointed out that virtually all the atmospheric gases undergo cycles
which are more or less dominated by the biosphere. Only a few species (e.g.
O3z, Rn) exhibit cycles which are purely governed by physical-chemical reactions.
The main sources and sinks for atmospheric trace gases in the biosphere are
the ocean, soils, vegetation, and animals: for detailed reviews see Buat-Menard
(1986), Bouwman (1990), Sharkey et al. (1991), and Khalil (1993).

The sources and sinks in soils include (1) abiotic chemical reactions (e.g. the
production of CO from soil organic carbon (Conrad & Seiler 1985a)), (2) ‘fortu-
itous’ biochemical reactions that do not support microbial growth (e.g. hydrol-
ysis of OCS (Kesselmeier 1992)), (3) biochemical reactions by the extracellular
enzymes present in soil (e.g. oxidation of H, (Conrad et al. 1983a)), and (4)
metabolic reactions that support the growth of microorganisms (e.g. oxidation of
CH, (King 1992)).

In most of these processes microorganisms are either directly or indirectly in-
volved. Soils probably show the highest abundance and diversity of microorgan-
isms in nature, and thus it is no wonder that soils are involved in and can even
dominate the cycling of many atmospheric trace gases. Table 1 lists a selection of
atmospheric trace gases for which soils are important sources and/or sinks, and
which are all (with the possible exception of Hy) of importance in atmospheric
chemistry and thus of considerable concern with respect to climate and to global
change. To understand and predict changes in the source and sink strengths of
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Table 1. Contribution of the soil to the cycling of atmospheric trace gases

contribution
mixing total annual (%) of soils to

. lifetime ratio budget increase total budgets as

race —_——

gas (days)  (ppbv) (Tga™') (%)  source sink impact ref.

N-2O 60 000 310 15  0.2-0.3 70 ? stratospheric  1-4
chemistry;
greenhouse
effect

CHy4 4000 1700 540 < 0.8 60 5 greenhouse 4-7
effect;
tropospheric &
stratospheric
chemistry

H, 1000 550 90 0.6 5 95 insignificant 8,9

O0CS > 350 0.5 1.2 ? 25 ? aerosol 10-12
formation

(60) 100 100 2600 1.0* 1 15 tropospheric 8,13
chemistry

NO 1 < 0.1 60 ? 20 ? tropospheric 3,14
chemistry

(1) Khalil & Rasmussen 1992; (2) Bouwman 1990; (3) Davidson 1991; (4) Prinn 1994; (5)
Cicerone & Oremland 1988; (6) Khalil & Rasmussen 1990a; (7) Steele et al. 1992; (8) Conrad
1988; (9) Khalil & Rasmussen 1990b; (10) Andreae & Jaeschke 1992; (11) Chin & Davis 1993;
(12) Méller 1984; (13) Khalil & Rasmussen 1990¢; (14) Conrad 1990.

#The long-term trend has recently reversed; CO is now decreasing by about 6% per year (Novelli
et al. 1994).

these trace gases, it is necessary to know the processes involved in generating the
net flux at the soil-atmosphere interface.

2. Diffusion of trace gases

The net flux of a trace gas is usually the result of production, consumption, and
transport within the soil column. Whether produced or consumed, the diffusional
flux of a trace gas is basically controlled by Fick’s law and thus is proportional to
the actual diffusion coefficient in soil and to the concentration gradient of the trace
gas. The actual diffusion coefficient is difficult to determine, being affected by the
temperature and air-filled porosity of the soil. In particular, the distribution of
water has drastic effects on diffusion. In well-aerated soils (‘upland soils’), the
diffusional flux is dominated by diffusion in the air-filled soil pores, since the
molecular diffusion coefficient in water is about four orders of magnitude lower
than in air. In addition, many of the trace gases (in table 1 all except N,O)
are not very soluble in water. However, in watersaturated flooded soils (‘wetland
soils’), diffusion is entirely within the water phase until the trace gas reaches the
water—atmosphere interface or a plant root, from where it may be transported to
the atmosphere by gas mass flow or by diffusion through the plant’s gas vascular
system (Armstrong 1979; Schiitz et al. 1991). Some of the differences between
upland and wetland soils are depicted in figure 1.
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Figure 1. Flux of trace gases between upland and wetland soils and the atmosphere. Thick
arrows represent major fluxes, thin arrows minor fluxes.

3. Simultaneous production and consumption of trace gases in soil

Two different situations exist. The first is where production and consumption
processes are more or less homogeneously distributed within the soil, a situation
typical of upland soils, but also of anaerobic processes occurring within the anoxic
zones of wetland soils. The second is where production and consumption processes
are spatially separated, as is usual in wetland soils, where the deeper anoxic
soil layers (sites of production) are covered at the surface with a shallow oxic
layer (site of consumption). The roots of aquatic macrophytes that penetrate the
anoxic zones of wetland soils are often surrounded by a thin oxic layer, which
also provides a site for aerobic consumption processes (Conrad 1989; Schiitz et
al. 1991).

In upland soils, the existence of both production and consumption reactions
can be infered if it can be shown that there is a compensation concentration at
which the two processes are in equilibrium and at which no net flux is observed.
In oxic upland soils this is almost always true, with compensation concentrations
established for Hy (Seiler 1978; Conrad & Seiler 1980a), CO (Seiler 1978; Con-
rad & Seiler 1985b), OCS, N,O (Seiler & Conrad 1981) and NO (Johansson &
Galbally 1984; Remde et al. 1989). The compensation concentrations for N,O are
usually so high that upland soils are almost always a source of atmospheric N,O.
This may also turn out to be the case for OCS. By contrast, the compensation
concentrations for Hy are usually so low (except at sites with biological N, fixa-
tion (Conrad & Seiler 1980a)), that upland soils almost always act as a sink for
atmospheric H, (Seiler 1978; Conrad 1988). On the other hand, the compensation
concentrations for CO (Conrad & Seiler 19800, 1985b; Scharffe et al. 1990) and
NO (Slemr & Seiler 1984, 1991) vary with changing soil conditions and are in a
range such that soil may dynamically change from acting as a source to acting
as a sink. An example is shown in figure 2, where the CO compensation concen-
tration changes during the day. During the hot hours of the day it is higher than
the atmospheric CO concentration, so that there is a net flux of CO from the soil
into the atmosphere. If the CO concentration is increased experimentally, CO is
taken up by the soil until the compensation concentration is once again reached.

There is, as yet, no firm evidence for a CH; compensation concentration. How-
ever, a compensation concentration may exist, since tropical upland soils are

Phil. Trans. R. Soc. Lond. A (1995)
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Figure 2. Diurnal change of the CO concentration outside (o) and inside () a chamber covering
the surface of a savanna soil in the Transvaal (South Africa). The CO concentrations inside the
chamber represent CO compensation concentrations between release and uptake by the soil. The
arrows indicate injection of CO into the chamber. Adapted from Conrad and Seiler (1985¢).

sometimes sources of atmospheric CHy, especially during the rainy season (Keller
et al. 1986, 1993). However, in most upland soils CH, production seems to be
marginal, probably because CH,-producing bacteria require strictly anoxic and
reduced conditions and thus are inactive in well-aerated upland soils (Cicerone &
Oremland 1988; Conrad 1989; Reeburgh et al. 1993). Methane uptake by upland
soils seems to be limited by diffusion from the atmosphere into the soil (Déorr et al.
1993) and from the air-filled pore space into the soil aggregates (Koschorreck &
Conrad 1993). It is also limited by the activity of methanotrophic bacteria, which
typically occur in subsurface soil layers and on the larger soil grains (Bender &
Conrad 1994), and by the threshold and affinity for CH, of the methanotrophic
population (see below; Bender & Conrad 1992, 1993).

In wetland soils, oxidation of CH, in the overlying oxic soil layer diminishes
the flux of CH, to the atmosphere from the deeper water-saturated, anoxic soil
(Reeburgh et al. 1993). It is also possible that CH, is oxidized during its passage
through the oxic layers surrounding the roots of these plants that penetrate the
anoxic layers. The role of transport and oxidation in the cycling of CH, in paddy
fields has recently been reviewed by Conrad (1993).

4. Gas concentration and microbial activity

Microorganisms metabolizing trace gases at atmospheric concentrations must
be able to deal with gas concentrations that are typically in the picomolar to
nanomolar range. These low concentrations are unfavourable for synthesis of cel-
lular biomass (Conrad 1984). Interestingly, many of the processes involved in the
consumption of trace gases at atmospheric concentrations are fortuitous reac-
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Table 2. Microorganisms and reactions important in production or consumption of trace gases

in soil

trace consumption at consumption at

gas production elevated concentrations atmospheric concentrations

CH4 methanogens common methanotrophs; unknown methanotrophs;

nitrifiers nitrifiers

H; fermenting bacteria; Knallgas bacteria; abiotic soil hydrogenases
N,-fixing bacteria anaerobic chemolithotrophs®

CO chemical conversion carboxydotrophs; nitrifiers;
of soil organic carbon; anaerobic chemolithotrophs oligotrophic bacteria
anaerobic chemolithotrophs

OCS thiocyanate hydrolase carbonic anhydrase carbonic anhydrase

N2O denitrifiers; DNRA®; denitrifiers denitrifiers

NO denitrifiers; DNRA; denitrifiers; methanotrophs; denitrifiers; methanotrophs;

nitrifiers; chemical

heterotrophic bacteria

heterotrophic bacteria

decomposition of NO5

2 Anaerobic chemolithotrophs are methanogens, homoacetogens, sulphate reducers, etc.
PDNRA is dissimulatory reduction of nitrate to ammonium.

tions that do not serve microorganisms for growth (table 2). This is the case with
the oxidation of CO by ammonium-oxidizing nitrifiers (Jones & Morita 1983a;
Jones et al. 1984), of Hy by soil hydrogenases (Conrad & Seiler 1981; Conrad et al.
1983a; Schuler & Conrad 1990), of OCS by the carbonic anhydrase present in var-
ious CO.-fixing bacteria (Protoschill-Krebs & Kesselmeier 1992), and of NO by
heterotrophic bacteria (Baumgértner et al. 1995, unpublished work). In all these
cases, the trace gases are oxidized rather than reduced and the enzymes involved
have the high affinity and the low threshold required for reaction with a trace gas
at atmospheric concentrations. This is also true for atmospheric CH, which, how-
ever, is probably not fortuitously but ‘usefully’ oxidized by an unknown methan-
otrophic population (Bender & Conrad 1992). Similarly, atmospheric CO seems
to be oxidized to some extent by unknown oligotrophic microorganisms (Conrad
& Seiler 1982).

Only N,O and (to some extent) NO seem to be consumed by reduction pro-
cesses in aerated upland soils. Such soils normally contain anoxic microsites (Sex-
stone et al. 1985; Zausig et al. 1993) which are presumably where the reduction
occurs. Reduction of NO and N,O mainly involves the well-known denitrifiers
that catalyse the sequential reduction of nitrate — nitrite — NO — N,O —
N, (Knowles 1982; Tiedje 1988; Zafiriou et al. 1989; Remde & Conrad 1991).
However, consumption of atmospheric NO in upland soils seems to involve two
additional reactions, (i) fortuitous oxidation by heterotrophic bacteria (see above)
and (ii) consumption by methanotrophic bacteria (Kramer et al. 1990).

Frequently, however, the microorganisms involved in the consumption of trace
gases at atmospheric concentrations are not those which have been isolated on
the basis of their ability to use one of the trace gases for growth at high gas
concentrations (percent level). This is obviously true for the commonly known
methanotrophs (CH,) (Conrad 1984; Bender & Conrad 1992; King 1993), the
Knallgas bacteria (H,) (Conrad 1988), and the carboxydotrophic bacteria (CO)
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H, oxidation (nmol g-'min-!)

- -
0 0.004 0.008 0.012 0.016
v/S/(1 g-'min-!)
Figure 3. Eadie-Hofstee plot of the kinetics of Hy oxidation in a meadow soil, revealing two

activities with K, values of 19 and 1450 ppmv Hs, respectively. Adapted from Héaring & Conrad
(1994).

(Conrad 1988). All these bacteria can only use trace gases at elevated concentra-
tions (table 2). For this reason they are probably only active adjacent to special
spots (e.g. anoxic microsites, root nodules; see below) in the soil where the trace
gases are produced at such high rates that elevated concentrations are gener-
ated. Thus, Knallgas bacteria contribute to the oxidation of the relatively high
H, concentrations found in the vicinity of Hy-producing root nodules of legumes
(LaFavre & Focht 1983; Popelier et al. 1985; Cunningham et al. 1986; Schuler
& Conrad 1991). Kinetic experiments demonstrate the existence in soil of both
Knallgas bacteria, with low affinity for H, and soil hydrogenases, with high affin-
ity for Hy (figure 3; Schuler & Conrad 1990; Héring & Conrad 1994). Schuler
& Conrad (1991) showed that the H, compensation concentration was relatively
large when nodulated legumes grown on sterile soil were inoculated with Knall-
gas bacteria. The Knallgas bacteria could only consume the H, produced by the
legumes down to concentrations of about 13 ppmv H,. The consumption of H,
to still lower concentrations was only possible if the soil hydrogenases were also
active, i.e. in non-sterile soil. However, it is likely that the soil hydrogenases
operate in tandem with the H,-oxidizing bacteria, since the soil hydrogenases
are reversibly inhibited by exposure to high H, concentrations (Conrad & Seiler
1981). Knallgas bacteria presumably first reduce the H, concentration to a level
that allows the soil hydrogenases to operate.

The importance of these microorganisms for reducing the flux of trace gases
into the atmosphere is most evident in wetland soils (e.g. rice fields), where the
metabolites CHy, Hs, NoO and NO are produced at potentially high rates but
released into the atmosphere at drastically reduced rates. Consumption of H,
is achieved by various anaerobic chemolithotrophic bacteria (methanogens, ho-
moacetogens, sulphate reducers, etc.) within the anoxic environment (Conrad
1989) and, in addition, by the aerobic Knallgas bacteria at the anoxic-oxic in-
terface (Schiitz et al. 1988). Consumption of CH, is achieved by the common
methanotrophic bacteria at the anoxic-oxic interface (King 1990; Conrad & Roth-
fuss 1991; Bosse et al. 1993; Bender & Conrad 1994). Nitrous oxide and NO are
effectively consumed within the anoxic environment by sequential reductive den-

Phil. Trans. R. Soc. Lond. A (1995)
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itrification to N,, thus reducing the flux into the atmosphere to very low rates
(Freney & Denmead 1992; Galbally et al. 1987), but in this case by the same
denitrifying bacteria which act on NO and N,O at atmospheric concentrations.

5. Microorganisms producing or consuming more than one trace gas

Certain species of microorganism are capable of metabolizing more than one
trace gas; see table 2. Autotrophic nitrifiers are involved in the oxidation of CO
(Jones & Morita 1983a; Jones et al. 1984) and probably also of CH; (Hyman &
Wood 1983; Jones & Morita 1983b; Castro et al. 1994). Methanotrophs can also
be involved in heterotrophic nitrification and thus in the cycling of NO and N,O
(Yoshinari 1985; Knowles & Topp 1988; Kramer et al. 1990). The significance of
the bioversatility of these organisms for the turnover of trace gases in soil deserves
further investigation. Several types of anaerobic Hy-consuming chemolithotrophic
bacteria (methanogens, homoacetogens, sulphate reducers, etc.), which play an
important role in the control of CH, production in anoxic wetland soils (Conrad
1989), also have the potential to produce and consume CO (Diekert & Wohlfarth
1994). However, the significance of this potential for the turnover of CO in wetland
soils is largely unexplored (Conrad et al. 1983b, 1988).

6. Cycling of trace gases in wetland and upland soils

Whereas wetland soils are always sources, upland soils can act both as sources
or sinks of atmospheric trace gases (figure 1). For the most part, we do not know
whether the microorganisms living in anoxic microsites within upland soils are
the same as those living in anoxic wetland soils. Interestingly, strictly anoxic
methanogenic bacteria that typically occur in anoxic wetland soils also occur in
low numbers in upland soils which have never been flooded (Mayer & Conrad
1990); they are even found in desert soils (Peters & Conrad 1995). As a first
approach, we may therefore assume that although the species might be different,
the reactions that they catalyse are the same in both environments.

However, anaerobic microorganisms are both more abundant and more active
in wetland than in upland soils. This is obvious for production processes such
as CH, production (Conrad 1989). In principle, it is also true for H, which is
produced in large amounts by fermenting bacteria in wetland soils, but converted
to CH; (among other products) so that only small amounts of H, escape into the
atmosphere (Schiitz et al. 1988). In upland soils, on the other hand, H, production
by fermentation is negligible (Conrad 1988). Instead, it is produced by biological
N, fixation in legumes (Conrad & Seiler 1980a), whose root nodules provide a
highly specialized low-O, environment, allowing the O,-sensitive nitrogenase to
be active within oxic soils.

Very little is known about how the production of CO and OCS differ in up-
land and wetland soils. In oxic upland soils, CO is mainly produced during the
chemical oxidation of soil organic matter (Conrad & Seiler 1985a, b). In anoxic
wetland soils, CO can also be produced by anaerobic chemolithotrophs during
metabolism (Diekert & Wohlfarth 1994). The production processes of OCS are
mostly unknown, except for one reaction, the hydrolysis of thiocyanate (SCN™
+ H30" — OCS + NH3) by microorganisms containing the enzyme thiocyanate
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hydrolase (Kelly et al. 1993; Katayama et al. 1992). This enzyme may be active
in both wetland and upland soils (Minami & Fukushi 1981).

The difference between upland and wetland soils is also seen in consumption
processes, for example Hy consumption. In contrast to upland soils, where soil hy-
drogenases and, to some extent, also Knallgas bacteria collaborate (Conrad 1988),
consumption of Hy in wetland soils is achieved by anaerobic chemolithotrophs
(Conrad 1989, 1995). A similar difference exists for CO consumption. Ammonium-
oxidizing nitrifiers, oligotrophic bacteria, and (to some extent) carboxydotrophic
bacteria all contribute to CO consumption in upland soils (Conrad 1988; Morsdorf
et al. 1992), whereas it is likely that anaerobic chemolithotrophs dominate CO
turnover in wetland soils. The methanotrophs active in wetland soils differ in
their kinetics from those in upland soils, since the former are exposed to elevated
CH, concentrations, whereas the latter are exposed to atmospheric concentra-
tions of CH, (see above; Bender & Conrad 1992, 1994). Anaerobic CH,-oxidizing
microorganisms seem to play an important role in marine sediments (Alperin &
Reeburgh 1984; Iversen & Joergensen 1985), but have not yet been isolated.
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Discussion

K. A. SmitH (SAC, Edinburgh, U.K.). In the course of work done in the U.S.A.
over 20 years ago (Smith et al. 1973), which was primarily intended to study soil
uptake of CO, I found that sterilized soils released CO, so presumably this was
by a non-biological process. Does Dr Conrad believe that his observations of CO
emission from soils in hot, dry conditions were due to non-biological production?

R. CONRAD. Yes, I can confirm that Dr Smith’s observation that CO production
in soil is largely due to non-biological processes that are also active in steril-
ized soil. CO is probably produced by thermal decomposition of humic material
(Conrad & Seiler 1985a).
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